荧光颜料的荧光原理_荧光颜料如何发光

什么是荧光色?
“荧光”颜色比传统颜色吸收和反射更多的光,由于荧光颜料吸收和分散更多的光,因此它们显得更明亮、耀眼、生动和引人注目。荧光颜料通常被称为霓虹颜料,霓虹颜料使用大量可见光谱和较低波长,传统颜色与霓虹颜料粉的区别在于荧光颜料粉末吸收并转换主波长的光能。不过它也改变了紫外线的波长,然而其他常规颜色在可见光谱中会变得更低。
“荧光”颜色比传统颜色吸收和反射更多的光,由于荧光颜料吸收和分散更多的光,因此它们显得更明亮、耀眼、生动和引人注目。荧光颜料通常被称为霓虹颜料,霓虹颜料使用大量可见光谱和较低波长,传统颜色与霓虹颜料粉的区别在于荧光颜料粉末吸收并转换主波长的光能。不过它也改变了紫外线的波长,然而其他常规颜色在可见光谱中会变得更低。
荧光颜料的基本认识
光可以激发荧光颜料发出更明亮,闪烁,闪烁,更耀眼的色调比传统颜料。紫外光一般负责荧光颜料的亮光和光泽,因此它又被称为紫外荧光颜料。在黑光下过量的紫外线辐射会使颜料看起来非常明亮和生动。如果你想让颜料在不使用黑光的情况下显得明亮而生动,可以使用日光激发的颜料。
光可以激发荧光颜料发出更明亮,闪烁,闪烁,更耀眼的色调比传统颜料。紫外光一般负责荧光颜料的亮光和光泽,因此它又被称为紫外荧光颜料。在黑光下过量的紫外线辐射会使颜料看起来非常明亮和生动。如果你想让颜料在不使用黑光的情况下显得明亮而生动,可以使用日光激发的颜料。
荧光颜料的荧光原理
当光波撞击分子时,一个光子被俘获并为系统提供能量,系统能量会将电子从基态推到激发阶段,然后分子会经历不同的阶段,与此相关的是——振动弛豫、内部转换和荧光过程。
当光波撞击分子时,一个光子被俘获并为系统提供能量,系统能量会将电子从基态推到激发阶段,然后分子会经历不同的阶段,与此相关的是——振动弛豫、内部转换和荧光过程。
1、振动松弛的过程
每个能量状态都有更多的次要能级,称为振动能级,电子将在这些能级之间从最初的位置下降到激发阶段的最低振动能级,电子的下降称为振动弛豫,电子下落过程也会释放出微量的能量作为热能。
每个能量状态都有更多的次要能级,称为振动能级,电子将在这些能级之间从最初的位置下降到激发阶段的最低振动能级,电子的下降称为振动弛豫,电子下落过程也会释放出微量的能量作为热能。
2、内部转换的过程
当电子处于该状态的最低振动能级时,它需要下降到下一个能级,假设电子在除初始激发态之外的任何激发态下落,只有从较高激发态的较低振动能级变为处于其下处于相似能量值的激发态的高振动能级才有可能,在这个过程中,没有能量损失或获得,因此,它被称为等能过程。
当电子处于该状态的最低振动能级时,它需要下降到下一个能级,假设电子在除初始激发态之外的任何激发态下落,只有从较高激发态的较低振动能级变为处于其下处于相似能量值的激发态的高振动能级才有可能,在这个过程中,没有能量损失或获得,因此,它被称为等能过程。
3、荧光的过程
电子经过振动松弛和内部转换阶段后,达到第一激发态的最低振动能级,当电子到达基态时会发生荧光,剩余的能量将以光子的形式释放出来,经过振动弛豫过程后,以光子形式释放的能量与最初吸收的能量不同,而是更低,低能量意味着释放的光子将具有较少的频率和高波长。
电子经过振动松弛和内部转换阶段后,达到第一激发态的最低振动能级,当电子到达基态时会发生荧光,剩余的能量将以光子的形式释放出来,经过振动弛豫过程后,以光子形式释放的能量与最初吸收的能量不同,而是更低,低能量意味着释放的光子将具有较少的频率和高波长。
荧光颜料如何发光,为什么会发生荧光
原子核由带负电荷的电子组成,存在于原子核中的电子具有不同的能级,在原子中总是优选低能态。当原子结合形成分子时,它们这样做只是因为这种结合会降低它们的能量,使它们更稳定。当原子结合形成分子时,就会形成称为轨道的能级,电子存在于轨道中,每个原子和分子都有不同的能级,整个系统被称为量子化。
原子核由带负电荷的电子组成,存在于原子核中的电子具有不同的能级,在原子中总是优选低能态。当原子结合形成分子时,它们这样做只是因为这种结合会降低它们的能量,使它们更稳定。当原子结合形成分子时,就会形成称为轨道的能级,电子存在于轨道中,每个原子和分子都有不同的能级,整个系统被称为量子化。
基态,也称为最低可能能量系统,是系统始终存在的地方。系统将总是倾向于尽可能低的能量系统。当系统被注入能量时,分子处于其激发阶段,并将迅速通过从系统释放能量以返回最低能量状态(也被称为基态)的阶段。一个这样的阶段就是在该系统中发生的荧光。
【返回上一页】
最新产品
- 润巴DC系列荧光颜料 | 涂料油墨用高性能耐强溶剂荧光颜料
- 苏达山Graphtol Carmine HF3C高透明蓝光红有机颜料PR176(塑料纤维用)
- 酞菁绿PG36 | Heliogen Green K9362 | 高性能透明黄光绿有机颜料
- DIC钛阳化学 Sicotan Yellow L2110 铬钛黄 | 涂料用红相黄无机复合颜料
- DIC Cinquasia Scarlet L3080汽车漆专用高透明黄相猩红有机颜料
- DIC Irgazin Orange L3250 HD涂料用无铅高遮盖DPP橙有机颜料
- 巴斯夫Tinuvin 928光稳定剂|高性能涂料用苯并三唑类紫外光吸收剂
- 润巴Ranbar Red P1631 | 颜料红269 | 油墨涂料用高性能蓝光红有机颜料
- 葩丽特Paliotol Yellow L2146HD涂料用高遮盖红相黄有机颜料
- DIC Irgazin Yellow L2060 | 涂料与油墨专用高性能有机颜料黄110
- 润巴Ranbar Red PFS高性能蒽醌染料溶剂红111
- 润巴铁锰棕颜料Ranbar Brown I3664耐高温无机颜料棕43
产品列表
最新文章
- 巴斯夫南京启动高性能分散剂生产线 推进CFRP技术本地化与可持续发展
- DIC公布2025年第三季度财报:DIC颜料业务呈量降利升趋势
- 热致变色颜料 | 热敏变色材料原理、类型与应用指南
- 彩色颜料制造商协会CPMA成立100周年|回顾全球颜料行业里程碑与未来创新趋势
- Sun Chemical钛阳化学扩大苝系颜料产能,强化高性能有机颜料供应能力
- 钛阳化学Sun Chemical & DIC将在CHINACOAT 2025展示全新效果颜料和树脂解决方案
- 酸性金属络合物染料市场分析(2025-2034):可持续化学与纺织创新驱动全球增长
- 荧光颜料有毒吗?对人体有害吗?安全真相解析
- 全球着色剂市场展望:2024-2033年规模、趋势与驱动因素深度解析
- 荧光颜料的特点有哪些?让色彩‘会发光’的秘密
- 颜料粒径与比表面积的关系解析:如何影响着色力与分散性
- 龙佰集团收购英国泛能拓Venator Greatham钛白粉工厂
- 有机颜料与无机颜料的区别与选择指南|特性分析、应用领域与性能对比
- 全球高性能颜料市场趋势与预测(2025-2032)
- 有机颜料与染料的区别有哪些?一文讲透两者核心特性与应用选择
- 变色龙颜料原理与应用领域|奇幻变色颜料的色彩效果
- 色母粒分散性影响因素:材料与工艺对塑料制品颜色均匀性的影响
- 解决色母粒常见问题:应对颜色迁移、色差与渗色的全面解决方案
- 2025年钛行业报告:科慕、特诺、龙蟒佰利联领跑全球二氧化钛(钛白粉)市场
- DIC 2025年上半年财报:营业收入增长22.9%,DIC颜料业务推动盈利回升